Senin, 13 April 2015

Kubus

1.      KUBUS :
a.       Gambar



b.       Unsur Unsur Kubus
1. Sisi
Sisi sebuah kubus adalah bidang batas suatu kubus. Kubus mempunyai enam sisi. Keenam sisinya sebangun dan sama besar
. Pada Gambar diatas , keenam sisi kubus tersebut adalah
Sisi bawah : ABCD.
Sisi atas : EFGH.
Sisi tegak : ABEF, BCFG, CDGH, ADEH.

2.  Rusuk
Rusuk suatu kubus adalah garis pertemuan dua sisi kubus. Sebuah kubus memiliki 12 rusuk. Pada Gambar diatas, rusuk-rusuk tersebut adalah AB, BC, CD, AD, EF, FG, GH, EH, AE, BF, CG, dan DF. Setiap rusuk pada kubus memiliki panjang yang sama.
3. Titik Sudut

Titik sudut suatu kubus diartikan sebagai titik pertemuan antara tiga rusuk atau tiga sisi di dalam kubus. Kubus mempunyai 8 titik sudut. Titik-titik sudut kubus adalah A, B, C, D, E, F, G, dan H.

4. Diagonal sisi
Diagonal sisi sebuah kubus adalah garis yang menghubungkan dua titik sudut yang berhadapan pada tiap sisi kubus. Jika dari titik A di tarik garis lurus ke titik F atau dari titik B ke titik E, maka garis AF atau BE adalah diagonal sisi kubus ABCD.EFGH.. Karena setiap sisi kubus paling banyak menyumbangkan 2 diagonal sisi, maka pada sebuah kubus terdapat 12 diagonal sisi, yaitu AF, BE, BG, CF, CH, DG, DE, AH, AC, BD, EG, dan FH. Diagonal sisi kubus mempunyai panjang yang sama, yaitu a√2 untuk suatu kubus dengan panjang rusuk a.
Lihat Gambar 1.2. Jika panjang rusuk AB = a, maka EB = a. ∆ABF adalah segi tiga siku-siku. Dengan rumus Pythagoras, didapat:

AF2 = AB2 + BF2
AF2 = a2 + a2
AF2 = 2a2
AF = √2a2
AF = a√2

Jadi, panjang diagonal sisi kubus yang mempunyai panjang rusuk aadalah a√2

5. Diagonal Ruang
Diagonal ruang suatu kubus adalah ruas garis yang menghubungkan 2 titik sudut yang berhadapan pada suatu bangun ruang. Kubus mempunyai 4 diagonal ruang yang sama panjangdan keempatnya bertemu pada satu titik yang disebut titik pusat kubus. Keempat diagonal ruang tersebut adalah AG, BH, CE, dan DF. Jika panjang rusuk kubus ABCD.EFGH adalah a, maka panjan
Perhatikan segi tiga siku-siku BDH. Panjang DH = a, karena BD adalah diagonal sisi maka panjang BD = a√2 , sehingga:

HB2 = BD2 + DH2
HB2 = (a√2 )2 + (a)2
HB2 = 2a2 + a2
HB2 = 3a2
HB = √3a2
HB = a√3

Jadi, panjang diagonal ruang suatu kubus yang mempunyai panjang rusuk a adalah a√3

6. Bidang Diagonal
Bidang diagonal sebuah kubus adalah bidang yang melalui dua rusuk yang berhadapan. Kubus mempunyai enam bidang diagonal yang berbentuk persegi panjang yang kongruen. Bidang-bidang diagonal kubus ABCD.EFGH adalah ACEG, BCEH, CDEF, ADFG, ABGH, dan BDFH.

c.       Jaring Jaring Kubus

d.       Luas Permukaan
Luas Permukaan : 6 x s²
e.       Volume
Luas Alas ABCD  = sisi x sisi
                             = s x  s
                             = s2
Volum Kubus       = Luas Alas ABCD x  tinggi
                          = s2                       x  s
                          = s3

Volum Kubus dengan panjang sisi s satuan adalah s3 satuan volum.

Tidak ada komentar:

Posting Komentar